
DEVELOPER
R O L E D E S C R I P T I O N

CREWMOJO
W E L C O M E T O

Enabling performance experiences to be designed and delivered in days
not months.

Use these templates for inspiration or as a starting point for your own
system. When you need to automate and scale the process, each
template is ready to go in the Crewmojo platform.

Take a personal tour of Crewmojo.

www.crewmojo.com

https://www.crewmojo.com/demo
https://www.crewmojo.com/

Role: Developer

Level: Individual Contributor

Skills & Behaviours Codes Well

 Quality Focused

 User Focused

 Collaborative

 Connector

 Communicator

 Timely

Performance focused

Works within the architecture

Credit Wildbit Good Bad Project

Developer
This document describes the role by focusing on good and bad behaviours to
clearly indicate what success looks like. It has been open-sourced from the
Wildbit Good Bad Project

Customer Success Team Member

Codes Well

A good developer knows how to code well and is passionate about their craft.
They care about the quality of the code and work hard to maintain it.

A bad developer creates technical debt by sacrificing quality to meet a delivery
deadline. They don’t keep other developers in mind when writing code and fail to
make it easy to understand their work.

A good developer tests their own code instead of relying on QA to find every bug.
Having said that, they value the safety and self-documenting properties of
automated tests. They plan for ways in which their new work can introduce issues
and have a plan B. A bad developer fails to document their work. They never ask
for a code review for changes they make and have no interest in reviewing other
people’s code. A good developer is independent enough to know when the time is
right to include others during a project. A bad developer sits on their hands after
running out of tasks or hitting a roadblock. They fail to find consistency with
existing code structure when making code updates or changes.

Developer

Quality Focused

A good developer tests their own code instead of relying on QA to find every bug.
Having said that, they value the safety and self-documenting properties of
automated tests. They plan for ways in which their new work can introduce issues
and have a plan B. A bad developer fails to document their work. They never ask for a
code review for changes they make and have no interest in reviewing other people’s
code. A good developer is independent enough to know when the time is right to
include others during a project. A bad developer sits on their hands after running out
of tasks or hitting a roadblock. They fail to find consistency with existing code
structure when making code updates or changes.

User focused

A good developer is motivated by the success of their project. They keep the user
in mind when building features. They are innovative in their thinking and think
about the future to see the patterns of issues their systems and customers could
encounter. They build long-term solutions for these issues. A bad developer puts
technical correctness above user experience. They blame customers for not using
the product "correctly.”

A bad developer fails to take ownership and responsibility for the entire product
and bugs. They make sure everyone knows exactly who was responsible when a
bug was created by someone else.

Developer

Collaborative
A good developer makes sure that the team is in tune with what is being released.
They work closely with marketing and customer success to ensure that everyone
is ready for each release.

A bad developer releases work before the marketing and success team knows and
therefore causes issues for customers.

Connector
A good developer is eager to learn new things. They strive to understand how all
the pieces of the architecture work together and what state they are in. They
question the design and ideas behind features to solve for a solution. They
understand what makes a good user experience.

A bad developer is attached to their favorite technology. They think a single
method or process is the "ideal,” and that product history and situation should
never drive decisions. They bring unnecessary dependencies into the project to
suit their preferences.

Communicator

A good developer can communicate issues across the team as they happen to
avoid internal confusion and customer frustration. They are glad to listen to advice
and feedback. A bad developer is unwilling to shift their focus from whatever
they’re doing to a help a customer in need. They lack empathy for customers and
users. A good developer works closely with other team members to make sure
nothing gets lost in translation. They are a good teacher and share their expertise
with the rest of their team. A good developer respects other people's time. They
pull together all the background info before sending a task to another team
member.

A bad developer fails to specify needs and expectations from other teams ahead
of time. They are reluctant to help other team members. A bad developer blames
other factors when their code causes an issue or fails to solve a problem, for
customers, or their project.

Developer

Timely
A good developer knows how to estimate their time on a task and makes sure they
finish their work in a reasonable amount of time with realistic deadlines. They
prefer to use existing solutions, but aren’t afraid to invent something new if it's
necessary.

A bad developer creates stress for themselves and for the team by failing to
prioritize their time. They will spend weeks on unnecessary work because they
failed to ask insightful questions before getting started.

Performance Oriented

A good developer builds for project performance. They build within limits and
always consider memory, storage, I/O, and network functions.

A bad developer complains about the limitation of their resources.

Developer

Works within the architecture
Good developers assume that what exists was designed with thought or prior
reasoning in mind.

A bad developers assumes the previous author was unqualified and aims to
change things instead of understanding history.

A good developer doesn’t strive for change to benefit their personal presence, and
know the difference between standing on preference and principle.

Bad developers crave complexity to maintain control. They don’t recognize the
difference between naive shortcuts and simplicity.

E X P L O R E M O R E

Building a world-class performance culture is made easy with our template
library and pre-designed employee experiences.

One-on-one templates
Performance review templates
Role descriptions
Goal templates
Survey templates
Engagement surveys
and more

Templates:
Onboarding new employees
Goal setting & alignment
Growth plans & coaching
Skill tracking & development
Feedback & recognition
Stay interviews
Performance reviews
Exit surveys & interviews
and more

Experiences:

View Templates Book a Demo

https://www.crewmojo.com/performance-management-templates
https://www.crewmojo.com/demo

